skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Link, Frederik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The southeastern New England Avalon Terrane (AT) accreted to the southeastern margin of the Nashoba Terrane (NT) at the onset of the Acadian orogeny (latest Silurian to Devonian). The NT represents the trailing edge of Ganderia. Rocks of the NT have previously been interpreted as having been extruded to the southeast over the AT as part of a channel flow zone (CFZ). Based on fold symmetries, it was inferred that only the top and center of this zone are located in the NT. Bedrock and structural mapping were carried out in the AT adjacent to the NT to test whether the bottom of the CFZ may be located in the AT. Data were collected from migmatitic biotite gneiss, mylonite, foliated quartzite, and gneiss. Structural data were divided into NE and SW domains. In the NE domain, foliations dip predominantly NW, and lineations plunge NE and SW. Migmatitic and gneissic rocks are absent in the SW domain, and orientations of mylonite zones and foliations in quartzite vary. Compared to the NE domain, rocks in the SW domain are strongly faulted and intruded by Ediacaran and late Silurian/Devonian granitic and gabbroic plutons. The presence of migmatite and consistency in structural orientations in the NE domain, and the general resemblance of structures to those in the NT make the NE domain a likely candidate to represent the bottom of the CFZ. U-Pb zircon data of the migmatitic biotite gneiss yielded a detrital zircon signature typical for Avalonia, with predominantly Mesoproterozoic and minor Paleoproterozoic and Tonian populations. Furthermore, zircon overgrowths are ~585 Ma, which suggests that high-grade metamorphism and partial melting occurred in the Ediacaran, i.e., not during the Acadian orogeny. Hence, the migmatitic biotite gneiss in the AT terrane does not represent the bottom of the CFZ. We believe that the Bloody Bluff Fault along the Nashoba-Avalon terrane boundary may have cut off the bottom of the CFZ. Our analysis is complemented by and provides context for high-resolution seismic imaging of the crust enabled by the ongoing GENESIS deployment of broadband seismometers across the NT. Preliminary results from GENESIS suggest a transition in crustal structure across the boundary between NT and AT, consistent with geological observations. 
    more » « less
  2. Constraints on the thickness, transitional boundaries, and composition of Earth's crust are pivotal in studying its formation and evolution. We use data from 132 seismic installations throughout the northeastern US to explore how tectonic events, such as orogenesis and rifting, have altered the crust of the northeastern US and southeastern Canada, and to distinguish between Laurentia and the Appalachian terranes. We include data from seismic installations from the NEST and SEISConn experiments, spanning the Laurentia–Appalachian boundary, and present estimates of crustal thickness,Vp/Vs, and thickness of the transition between crustal and mantle rocks using Ps receiver functions. We find some first-order differences between Laurentia and Appalachian terranes, with Laurentia exhibiting thicker crust (c.39 v.c.33 km) and a broader crust–mantle transition thickness (c.3 v. <1.5 km). AverageVp/Vsvalues are similar between Laurentia (c.1.77) and Appalachian terranes (c.1.74); however, we identify anomalousVp/Vsin a few regions, including highVp/Vsaround the Adirondack Mountains and lowVp/Vsin southern New England. The southern New England region is also anomalous in terms of its systematically thinner crust and sharper crust–mantle transition, which may be a consequence of the formation and collapse of the Acadian altiplano during the mid-to-late Paleozoic. 
    more » « less
  3. Abstract Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area. 
    more » « less
  4. The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust. 
    more » « less
  5. Abstract On 5 April 2024, 10:23 a.m. local time, a moment magnitude 4.8 earthquake struck Tewksbury Township, New Jersey, about 65 km west of New York City. Millions of people from Virginia to Maine and beyond felt the ground shaking, resulting in the largest number (>180,000) of U.S. Geological Survey (USGS) “Did You Feel It?” reports of any earthquake. A team deployed by the Geotechnical Extreme Events Reconnaissance Association and the National Institute of Standards and Technology documented structural and nonstructural damage, including substantial damage to a historic masonry building in Lebanon, New Jersey. The USGS National Earthquake Information Center reported a focal depth of about 5 km, consistent with a lack of signal in Interferometric Synthetic Aperture Radar data. The focal mechanism solution is strike slip with a substantial thrust component. Neither mechanism’s nodal plane is parallel to the primary northeast trend of geologic discontinuities and mapped faults in the region, including the Ramapo fault. However, many of the relocated aftershocks, for which locations were augmented by temporary seismic deployments, form a cluster that parallels the general northeast trend of the faults. The aftershocks lie near the Tewksbury fault, north of the Ramapo fault. 
    more » « less
  6. null (Ed.)
    Constraining the architecture of complex 3D volcanic plumbing systems within active rifts, and their impact on rift processes, is critical for examining the interplay between faulting, magmatism and magmatic fluids in developing rift segments. The Natron basin of the East African Rift System provides an ideal location to study these processes, owing to its recent magmatic-tectonic activity and ongoing active carbonatite volcanism at Oldoinyo Lengai. Here, we report seismicity and fault plane solutions from a 10 month-long temporary seismic network spanning Oldoinyo Lengai, Naibor Soito volcanic field and Gelai volcano. We locate 6,827 earthquakes with M L −0.85 to 3.6, which are related to previous and ongoing magmatic and volcanic activity in the region, as well as regional tectonic extension. We observe seismicity down to ∼17 km depth north and south of Oldoinyo Lengai and shallow seismicity (3–10 km) beneath Gelai, including two swarms. The deepest seismicity (∼down to 20 km) occurs above a previously imaged magma body below Naibor Soito. These seismicity patterns reveal a detailed image of a complex volcanic plumbing system, supporting potential lateral and vertical connections between shallow- and deep-seated magmas, where fluid and melt transport to the surface is facilitated by intrusion of dikes and sills. Focal mechanisms vary spatially. T-axis trends reveal dominantly WNW-ESE extension near Gelai, while strike-slip mechanisms and a radial trend in P-axes are observed in the vicinity of Oldoinyo Lengai. These data support local variations in the state of stress, resulting from a combination of volcanic edifice loading and magma-driven stress changes imposed on a regional extensional stress field. Our results indicate that the southern Natron basin is a segmented rift system, in which fluids preferentially percolate vertically and laterally in a region where strain transfers from a border fault to a developing magmatic rift segment. 
    more » « less